direct product, metabelian, supersoluble, monomial
Aliases: C3×C32⋊3Q16, C33⋊5Q16, C32⋊9Dic12, C12.77S32, C12.31(S3×C6), C3⋊2(C3×Dic12), (C3×C6).74D12, C6.27(C3×D12), C32⋊5(C3×Q16), (C3×C12).175D6, Dic6.1(C3×S3), (C3×Dic6).6C6, (C32×C6).24D4, C32⋊4Q8.4C6, (C3×Dic6).12S3, C32⋊8(C3⋊Q16), C6.45(C3⋊D12), (C32×C12).7C22, (C32×Dic6).2C2, C3⋊C8.(C3×S3), C4.4(C3×S32), (C3×C3⋊C8).1C6, (C3×C3⋊C8).6S3, C3⋊1(C3×C3⋊Q16), C6.4(C3×C3⋊D4), (C3×C6).23(C3×D4), (C32×C3⋊C8).2C2, (C3×C12).41(C2×C6), C2.7(C3×C3⋊D12), (C3×C6).73(C3⋊D4), (C3×C32⋊4Q8).1C2, SmallGroup(432,424)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C32⋊3Q16
G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >
Subgroups: 344 in 110 conjugacy classes, 36 normal (all characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, C32, C32, Dic3, C12, C12, Q16, C3×C6, C3×C6, C3⋊C8, C24, Dic6, Dic6, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, Dic12, C3⋊Q16, C3×Q16, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C3×C24, C3×Dic6, C3×Dic6, C32⋊4Q8, Q8×C32, C32×Dic3, C3×C3⋊Dic3, C32×C12, C32⋊3Q16, C3×Dic12, C3×C3⋊Q16, C32×C3⋊C8, C32×Dic6, C3×C32⋊4Q8, C3×C32⋊3Q16
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, Q16, C3×S3, D12, C3⋊D4, C3×D4, S32, S3×C6, Dic12, C3⋊Q16, C3×Q16, C3⋊D12, C3×D12, C3×C3⋊D4, C3×S32, C32⋊3Q16, C3×Dic12, C3×C3⋊Q16, C3×C3⋊D12, C3×C32⋊3Q16
(1 38 25)(2 39 26)(3 40 27)(4 33 28)(5 34 29)(6 35 30)(7 36 31)(8 37 32)(9 48 22)(10 41 23)(11 42 24)(12 43 17)(13 44 18)(14 45 19)(15 46 20)(16 47 21)
(1 38 25)(2 26 39)(3 40 27)(4 28 33)(5 34 29)(6 30 35)(7 36 31)(8 32 37)(9 48 22)(10 23 41)(11 42 24)(12 17 43)(13 44 18)(14 19 45)(15 46 20)(16 21 47)
(1 25 38)(2 26 39)(3 27 40)(4 28 33)(5 29 34)(6 30 35)(7 31 36)(8 32 37)(9 48 22)(10 41 23)(11 42 24)(12 43 17)(13 44 18)(14 45 19)(15 46 20)(16 47 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 15 5 11)(2 14 6 10)(3 13 7 9)(4 12 8 16)(17 32 21 28)(18 31 22 27)(19 30 23 26)(20 29 24 25)(33 43 37 47)(34 42 38 46)(35 41 39 45)(36 48 40 44)
G:=sub<Sym(48)| (1,38,25)(2,39,26)(3,40,27)(4,33,28)(5,34,29)(6,35,30)(7,36,31)(8,37,32)(9,48,22)(10,41,23)(11,42,24)(12,43,17)(13,44,18)(14,45,19)(15,46,20)(16,47,21), (1,38,25)(2,26,39)(3,40,27)(4,28,33)(5,34,29)(6,30,35)(7,36,31)(8,32,37)(9,48,22)(10,23,41)(11,42,24)(12,17,43)(13,44,18)(14,19,45)(15,46,20)(16,21,47), (1,25,38)(2,26,39)(3,27,40)(4,28,33)(5,29,34)(6,30,35)(7,31,36)(8,32,37)(9,48,22)(10,41,23)(11,42,24)(12,43,17)(13,44,18)(14,45,19)(15,46,20)(16,47,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,43,37,47)(34,42,38,46)(35,41,39,45)(36,48,40,44)>;
G:=Group( (1,38,25)(2,39,26)(3,40,27)(4,33,28)(5,34,29)(6,35,30)(7,36,31)(8,37,32)(9,48,22)(10,41,23)(11,42,24)(12,43,17)(13,44,18)(14,45,19)(15,46,20)(16,47,21), (1,38,25)(2,26,39)(3,40,27)(4,28,33)(5,34,29)(6,30,35)(7,36,31)(8,32,37)(9,48,22)(10,23,41)(11,42,24)(12,17,43)(13,44,18)(14,19,45)(15,46,20)(16,21,47), (1,25,38)(2,26,39)(3,27,40)(4,28,33)(5,29,34)(6,30,35)(7,31,36)(8,32,37)(9,48,22)(10,41,23)(11,42,24)(12,43,17)(13,44,18)(14,45,19)(15,46,20)(16,47,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,43,37,47)(34,42,38,46)(35,41,39,45)(36,48,40,44) );
G=PermutationGroup([[(1,38,25),(2,39,26),(3,40,27),(4,33,28),(5,34,29),(6,35,30),(7,36,31),(8,37,32),(9,48,22),(10,41,23),(11,42,24),(12,43,17),(13,44,18),(14,45,19),(15,46,20),(16,47,21)], [(1,38,25),(2,26,39),(3,40,27),(4,28,33),(5,34,29),(6,30,35),(7,36,31),(8,32,37),(9,48,22),(10,23,41),(11,42,24),(12,17,43),(13,44,18),(14,19,45),(15,46,20),(16,21,47)], [(1,25,38),(2,26,39),(3,27,40),(4,28,33),(5,29,34),(6,30,35),(7,31,36),(8,32,37),(9,48,22),(10,41,23),(11,42,24),(12,43,17),(13,44,18),(14,45,19),(15,46,20),(16,47,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,15,5,11),(2,14,6,10),(3,13,7,9),(4,12,8,16),(17,32,21,28),(18,31,22,27),(19,30,23,26),(20,29,24,25),(33,43,37,47),(34,42,38,46),(35,41,39,45),(36,48,40,44)]])
72 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4A | 4B | 4C | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 8A | 8B | 12A | ··· | 12H | 12I | ··· | 12Q | 12R | ··· | 12Y | 12Z | 12AA | 24A | ··· | 24P |
order | 1 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | 12 | 36 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 12 | ··· | 12 | 36 | 36 | 6 | ··· | 6 |
72 irreducible representations
Matrix representation of C3×C32⋊3Q16 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
22 | 59 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
56 | 70 | 0 | 0 | 0 | 0 |
48 | 17 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[22,0,0,0,0,0,59,10,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[56,48,0,0,0,0,70,17,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C3×C32⋊3Q16 in GAP, Magma, Sage, TeX
C_3\times C_3^2\rtimes_3Q_{16}
% in TeX
G:=Group("C3xC3^2:3Q16");
// GroupNames label
G:=SmallGroup(432,424);
// by ID
G=gap.SmallGroup(432,424);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,197,260,1011,80,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations