Copied to
clipboard

G = C3×C323Q16order 432 = 24·33

Direct product of C3 and C323Q16

direct product, metabelian, supersoluble, monomial

Aliases: C3×C323Q16, C335Q16, C329Dic12, C12.77S32, C12.31(S3×C6), C32(C3×Dic12), (C3×C6).74D12, C6.27(C3×D12), C325(C3×Q16), (C3×C12).175D6, Dic6.1(C3×S3), (C3×Dic6).6C6, (C32×C6).24D4, C324Q8.4C6, (C3×Dic6).12S3, C328(C3⋊Q16), C6.45(C3⋊D12), (C32×C12).7C22, (C32×Dic6).2C2, C3⋊C8.(C3×S3), C4.4(C3×S32), (C3×C3⋊C8).1C6, (C3×C3⋊C8).6S3, C31(C3×C3⋊Q16), C6.4(C3×C3⋊D4), (C3×C6).23(C3×D4), (C32×C3⋊C8).2C2, (C3×C12).41(C2×C6), C2.7(C3×C3⋊D12), (C3×C6).73(C3⋊D4), (C3×C324Q8).1C2, SmallGroup(432,424)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C3×C323Q16
C1C3C32C3×C6C3×C12C32×C12C32×Dic6 — C3×C323Q16
C32C3×C6C3×C12 — C3×C323Q16
C1C6C12

Generators and relations for C3×C323Q16
 G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 344 in 110 conjugacy classes, 36 normal (all characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, C32, C32, Dic3, C12, C12, Q16, C3×C6, C3×C6, C3⋊C8, C24, Dic6, Dic6, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, Dic12, C3⋊Q16, C3×Q16, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C3×C24, C3×Dic6, C3×Dic6, C324Q8, Q8×C32, C32×Dic3, C3×C3⋊Dic3, C32×C12, C323Q16, C3×Dic12, C3×C3⋊Q16, C32×C3⋊C8, C32×Dic6, C3×C324Q8, C3×C323Q16
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, Q16, C3×S3, D12, C3⋊D4, C3×D4, S32, S3×C6, Dic12, C3⋊Q16, C3×Q16, C3⋊D12, C3×D12, C3×C3⋊D4, C3×S32, C323Q16, C3×Dic12, C3×C3⋊Q16, C3×C3⋊D12, C3×C323Q16

Smallest permutation representation of C3×C323Q16
On 48 points
Generators in S48
(1 38 25)(2 39 26)(3 40 27)(4 33 28)(5 34 29)(6 35 30)(7 36 31)(8 37 32)(9 48 22)(10 41 23)(11 42 24)(12 43 17)(13 44 18)(14 45 19)(15 46 20)(16 47 21)
(1 38 25)(2 26 39)(3 40 27)(4 28 33)(5 34 29)(6 30 35)(7 36 31)(8 32 37)(9 48 22)(10 23 41)(11 42 24)(12 17 43)(13 44 18)(14 19 45)(15 46 20)(16 21 47)
(1 25 38)(2 26 39)(3 27 40)(4 28 33)(5 29 34)(6 30 35)(7 31 36)(8 32 37)(9 48 22)(10 41 23)(11 42 24)(12 43 17)(13 44 18)(14 45 19)(15 46 20)(16 47 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 15 5 11)(2 14 6 10)(3 13 7 9)(4 12 8 16)(17 32 21 28)(18 31 22 27)(19 30 23 26)(20 29 24 25)(33 43 37 47)(34 42 38 46)(35 41 39 45)(36 48 40 44)

G:=sub<Sym(48)| (1,38,25)(2,39,26)(3,40,27)(4,33,28)(5,34,29)(6,35,30)(7,36,31)(8,37,32)(9,48,22)(10,41,23)(11,42,24)(12,43,17)(13,44,18)(14,45,19)(15,46,20)(16,47,21), (1,38,25)(2,26,39)(3,40,27)(4,28,33)(5,34,29)(6,30,35)(7,36,31)(8,32,37)(9,48,22)(10,23,41)(11,42,24)(12,17,43)(13,44,18)(14,19,45)(15,46,20)(16,21,47), (1,25,38)(2,26,39)(3,27,40)(4,28,33)(5,29,34)(6,30,35)(7,31,36)(8,32,37)(9,48,22)(10,41,23)(11,42,24)(12,43,17)(13,44,18)(14,45,19)(15,46,20)(16,47,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,43,37,47)(34,42,38,46)(35,41,39,45)(36,48,40,44)>;

G:=Group( (1,38,25)(2,39,26)(3,40,27)(4,33,28)(5,34,29)(6,35,30)(7,36,31)(8,37,32)(9,48,22)(10,41,23)(11,42,24)(12,43,17)(13,44,18)(14,45,19)(15,46,20)(16,47,21), (1,38,25)(2,26,39)(3,40,27)(4,28,33)(5,34,29)(6,30,35)(7,36,31)(8,32,37)(9,48,22)(10,23,41)(11,42,24)(12,17,43)(13,44,18)(14,19,45)(15,46,20)(16,21,47), (1,25,38)(2,26,39)(3,27,40)(4,28,33)(5,29,34)(6,30,35)(7,31,36)(8,32,37)(9,48,22)(10,41,23)(11,42,24)(12,43,17)(13,44,18)(14,45,19)(15,46,20)(16,47,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,43,37,47)(34,42,38,46)(35,41,39,45)(36,48,40,44) );

G=PermutationGroup([[(1,38,25),(2,39,26),(3,40,27),(4,33,28),(5,34,29),(6,35,30),(7,36,31),(8,37,32),(9,48,22),(10,41,23),(11,42,24),(12,43,17),(13,44,18),(14,45,19),(15,46,20),(16,47,21)], [(1,38,25),(2,26,39),(3,40,27),(4,28,33),(5,34,29),(6,30,35),(7,36,31),(8,32,37),(9,48,22),(10,23,41),(11,42,24),(12,17,43),(13,44,18),(14,19,45),(15,46,20),(16,21,47)], [(1,25,38),(2,26,39),(3,27,40),(4,28,33),(5,29,34),(6,30,35),(7,31,36),(8,32,37),(9,48,22),(10,41,23),(11,42,24),(12,43,17),(13,44,18),(14,45,19),(15,46,20),(16,47,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,15,5,11),(2,14,6,10),(3,13,7,9),(4,12,8,16),(17,32,21,28),(18,31,22,27),(19,30,23,26),(20,29,24,25),(33,43,37,47),(34,42,38,46),(35,41,39,45),(36,48,40,44)]])

72 conjugacy classes

class 1  2 3A3B3C···3H3I3J3K4A4B4C6A6B6C···6H6I6J6K8A8B12A···12H12I···12Q12R···12Y12Z12AA24A···24P
order12333···3333444666···66668812···1212···1212···12121224···24
size11112···244421236112···2444662···24···412···1236366···6

72 irreducible representations

dim11111111222222222222222244444444
type++++++++-+-+-+-
imageC1C2C2C2C3C6C6C6S3S3D4D6Q16C3×S3C3×S3D12C3⋊D4C3×D4S3×C6Dic12C3×Q16C3×D12C3×C3⋊D4C3×Dic12S32C3⋊Q16C3⋊D12C3×S32C323Q16C3×C3⋊Q16C3×C3⋊D12C3×C323Q16
kernelC3×C323Q16C32×C3⋊C8C32×Dic6C3×C324Q8C323Q16C3×C3⋊C8C3×Dic6C324Q8C3×C3⋊C8C3×Dic6C32×C6C3×C12C33C3⋊C8Dic6C3×C6C3×C6C3×C6C12C32C32C6C6C3C12C32C6C4C3C3C2C1
# reps11112222111222222244444811122224

Matrix representation of C3×C323Q16 in GL6(𝔽73)

100000
010000
008000
000800
000010
000001
,
100000
010000
001000
000100
0000072
0000172
,
100000
010000
0007200
0017200
000010
000001
,
22590000
0100000
0072000
0007200
000001
000010
,
56700000
48170000
000100
001000
000010
000001

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[22,0,0,0,0,0,59,10,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[56,48,0,0,0,0,70,17,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C3×C323Q16 in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes_3Q_{16}
% in TeX

G:=Group("C3xC3^2:3Q16");
// GroupNames label

G:=SmallGroup(432,424);
// by ID

G=gap.SmallGroup(432,424);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,197,260,1011,80,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽